ORGANIC SYNTHESES WITH SULFONES (PART XXVIII);

SYNTHESIS OF TERPENOID COMPOUNDS BY WAY OF MICHAEL ADDITION REACTIONS TO CONJUGATED DIENYL SULFONES.

M. Julia*, D. Lavé, M. Mulhauser, M. Ramirez-Muñoz and D. Uguen.

Laboratoire de Chimie de l'Ecole Normale Supérieure 24 rue Lhomond, 75231 Paris Cedex 05, France.

Abstract : Michael additions of ethanol and ketones to allyl-dienyl sulfones yielded di-allylic sulfones which were transformed into isoprenoīd compounds by either Ramberg-Bäcklund reaction or thermolysis.

Allyl dienyl sulfones are obtained by alkylation of the readily available 2-2 methyl-1,3 butadienyl sulfinate <u>1</u>. Addition reactions lead to diallyl sulfones ¹. A recent paper ²describing the Ramberg-Bäcklund reaction (R.B.) on such a diallyl sulfone prompted us to submit the present letter.

The addition of various nucleophiles such as ethanol, t-butyl acetoacetate and phenylthioacetore to the sulfone 2 proved possible leading to $\underline{3a}$ (E+Z), $\underline{3b}$ (E) $\overline{3}$, $\underline{3d}$ (E), eventually transformed into $\underline{3c}$, $\underline{3e}$, 4 and $\underline{5}$.

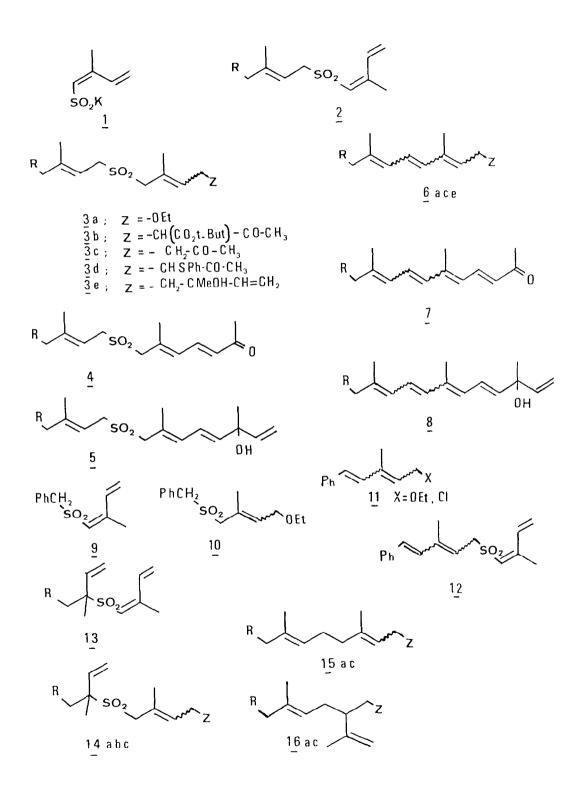
The R.B. reaction was then carried out under Meyers conditions ^{4a} or by a two step procedure ^{4b}; the results are shown in the table. It proved indeed possible to attach an isoprene unit to the original synthon through a double bond.

RAMBERG-BACKLUND REACTION	$R \xrightarrow{50_2} R$	had z
Substrate	Product	Yield (%)
<u>3a</u> , R=H	<u>6a</u> , R=H	82
<u>3a</u> , R=Prenyl	<u>6a</u> , R=Prenyl	55
<u>3e</u> , R=Prenyl	<u>ć</u> e, R=Prenyl	91
4 , R=Prenyl	7 ^{5a} R=Prenyl	50
<u>5</u> , R=Prenyl	8 ^{5b} R=Prenyl	70
10	11 (X = OEt)	81

The possibility of working out a recurrent method for the building-up of unsaturated polyisoprenoid compounds was then investigated : starting with benzyl chloride the steps 9 - 10 - 11 (X=OEt) were carried out as above. Conversion of the ether <u>11</u> (X=OEt) into the corresponding primary chloride <u>11</u> (X=Cl) followed by another alkylation gave <u>12</u> thus paving the way to a recurrent isoprenylation.

A different way of joining the isoprene units to the growing chain was the pyrolysis pioneered by Lacombe and Stewart 6 .

The isomeric tertiary allylic sulfones $\underline{13}$ are now readily available by treatment of the corresponding allylic esters with the dienesulfinate $\underline{1}$ under palladium(0) catalysis ⁷.


PYROLYSIS

Substrates	Mixture composition (%)	Total Yield (%)
<u>14c</u> , R = Prenyl	<u>15c</u> ^{5a} (60), <u>16c</u> (19), (21)*	86
<u>14a</u> , R = H	<u>15a</u> (58), <u>16a</u> (26), (14) [*]	73
<u>14a</u> , R = Prenyl	<u>15a</u> (65), <u>16a</u> (35)	60

^{*}unidentified isomeric products.

Addition of either ethanol or t-butylacetoacetate led to the di-allylic sulfones 14ac (R = H, Prenyl) which were pyrolysed at 180-200, C (Table) to give predominantly the head to tail products accompanied by minor amounts of isomeric compounds formed by 1-2' coupling (lavandulyl skeleton).

ACKNOWLEDGMENTS : We thank the C.N.R.S. (L.A. 32) for financial and material assistance.

REFERENCES

- 1 a P. Chabardes, M. Julia, A. Menet, Ger. Offen. 2319518, Chem. Abstr. <u>80</u>, 27403 (1974)
 - b P. Chabardes, M. Julia, A. Menet, Ger. Offen. 2319983, Chem. Abstr. <u>80</u>, 26750 (1974)
 c D. Lavé, Thèse Ingénieur-Docteur, Paris VI, 1978; J.J. Burger, T.B.R.A. Chen, E.R. De Waard and H.O. Huisman; Tetrahedron, 37, 417 (1980).
- 2 F. Näf, R. Decorzat and S.D. Escher, Tetrahedron Letters, 1982, 5043.
- 3 a The stereochemistry will be discussed in the full paper. b All new compounds have given a satisfactory analytical and spectrochemical (¹H, ¹³C NMR, I.R., Mass) data which will be described with the experimental details in the full paper.
- 4 a C.Y. Meyers, A.M. Malte and W.S. Mathews, J. Am. Chem. Soc., <u>91</u>, 7510 (1969). b G.M. Büchi and R.M. Freidinger, J. Am. Chem. Soc., <u>96</u>, 3332 (1974).
- 5 a Catalytic hydrogenation gave hexahydrofarnesylacetone. b Catalytic hydrogenation gave dihydroisophytol.
- 6 E.M. Lacombe and B. Stewart, J. Am. Chem. Soc., <u>83</u>, 3457 (1961).
- M. Julia, M. Nel and L. Saussine, J. organomet. chem., <u>C17</u>, 181 (1979); M. Julia and
 M. Nel to be published. Some other examples will be described in the full paper.
- 8 Part XXVII , J.N. Verpeaux and M. Julia, Tetrahedron Letters, 1982, 4319.

(Received in France 4 January 1983)